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A tilted Gaussian formula is given which approximately models the concentration 
distribution at moderate-to-large times after discharge in steady plane parallel flows. 

1. Introduction 
G. I. Taylor (1953, equation (28)) derived an easy-to-use Gaussian approximation 

for the longitudinal concentration distribution along a parallel shear flow. For a 
uniform discharge in Poiseuille pipe flow, Taylor's formula for the cross-sectionally 
averaged concentration F is 

with 

(1 . la)  

(1.1 b, c) 

Here pis the discharge per unit area, the bulk velocity, a2(0) the initial longitudinal 
variance, K the longitudinal diffusivity, K the transverse diffusivity, and a the pipe 
radius. For other flows only the expression (1.1 c) for the shear dispersion coefficient 
D ,  needs to be changed. The dotted curve in figure 1 compares Taylor's simple 
approximation with the (continuous curve) numerical results obtained by Gill & 
Ananthakrishnan (1967, figure 5). 

Aris (1956) pointed out that Taylor's work fails to account for the initial 
inefficiency of the shear dispersion process, while Chatwin (1970) emphasized the 
shortcomings as regards the skewness. Gill & Sankarasubramanian (1970) showed 
that the initial inefficiency could be remedied by allowing more complicated time 
evolution for the centroid and variance, while Smith (1987) dealt with the skewness a t  
large times by tilting the axes. The present paper combines these ingradients to derive 
an improved Gaussian approximation for a weighted-average concentration (c) : 

( 1 . 2 4  
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FIGURE 1. Comparison between the exact and approximate distributions in laminar pipe flow at 
time O.la*/~ after discharge. 

For Poiseuille pipe flow the shear dispersion coefficient D,, cross-sectional mixing 
rate A ,  and the skewness parameter a have the values 

(1.3a-c) 

Tilting the axes does not change the asymptotic shear dispersion coefficient D ,  from 
the value calculated by Taylor (1953). The dashed curve in figure 1 shows that this 
tilted Gaussian ( 1 . 2 ~ 4 )  is a significant improvement upon Taylor’s formula (1.1 u-c), 
despite inevitable disparities between the different averages F and (c). 

For other flows, the three parameters D,, A and a would need to be changed. The 
general prescription ( 2 . 3 ~ ~ )  stated in the next section reveals that, if the shear 
dispersion coefficient D ,  has to be calculated, then i t  only requires minor additional 
computation to evaluate the cross-sectional mixing rate A and the skewness 
parameter a. So, the claim made in the title of this paper is that the tilted Gaussian 
(1.2a-d) is an easy-to-use formula. 

The usefulness of the formula ( 1 . 2 ~ 4 )  lies in its efficacy. Hence precedence is given 
to illustrative examples. A derivation is deferred until the second half of this paper. 

2. Statement of results 
As in the now classical work of G. I. Taylor (1953), the principal task is to 

determine the (steady) centroid displacement function go(?/) : 

-ay(mKaygo)  = m(u-a), (2.la) 

and 

mKaygo = 0 on y = O,a, 

go = 0. 

(2.1 b)  

(2.1 c )  

Here m(y) is a transverse metric coefficient, K(Y) the transverse diffusivity, u(y )  the 
velocity profile, and overbars denote cross-sectional averaging : 

A =  s: mdy, r = ~ ~ m u d y .  (2.2a, 6 )  
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Different choices of m(y) permit y to be a Cartesian or polar coordinate. For vertically 
well-mixed channels the same equations apply, but with m = h being the water 
depth. 

The shear dispersion coefficient D,, skewness parameter a, and cross-section 
mixing rate A merely involve integrals of go: 

(2 .3a ,  b)  

( 2 . 3 ~ )  

To calculate the weighted average concentration ( c ) ,  we employ these three 
parameters D,, a, A in the tilted Gaussian formula (1.2 a-d). 

If we are more ambitious and seek the y-structure of the concentration field 
c(x,  y, t ) ,  then we use another tilted Gaussian : 

1, c =  (2x( a ” ) z  ‘““P(- 2(a2) 
(z - at -X)2  

( 2 . 4 ~ )  

(a2)  = (r2(0)+2(D,+K)T-2+-exp(-AT)--exp(-2AT), 3D 4D, DW ( 2 . 4 ~ )  
A A  A 

T = t + a ( ~ - ~ t ) .  (2 .4d)  

Here a2(0) is the initial variance of the discharge and K(y) is the longitudinal 
diffusivity . 

The above formulae ( 1 . 2 ~ 4 ,  (2 .4a-d)  only apply to uniform discharges. For a 
non-uniform discharge q(y ) ,  the Gaussian approximation for <c> needs to be 
modified : 

( 2 . 5 ~ )  

~ 

{l-(l+AT)exp(-AT)}-($X)2. ( 2 . 5 ~ )  

3. Poiseuille pipe flow 
In  applying the above prescription to laminar pipe flow, we write 

r = y, m = r ,  K = constant, u = 2 a ( l -  ( T / u ) ~ ) .  ( 3 . l a - d )  

The (conventional) centroid displacement function is given by 

ad 
- 2 4 ~  g - - - {2-6(r /a)2+3(r /a)4} .  (3 .2)  
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The requisite integrals of go have the values 

- a2a4 
g; = - (3.3a-c) 

a2a2 a3a4 
4 8 ~  ’ 7 2 0 ~ ~  ’ 

(u-a)go = - ( u - w ;  = S’ 

The general formulae (2.3a-c) for D,, a and A yield the results already used in the 
introduction : 

(3.4 a-c) 

The results shown in figure 1 correspond to a moderate value of the non- 
dimensional time since discharge 

At = 1.428. (3.5) 
So, it is to be expeoted that large-time approximations, such as derived by Taylor 
(1953), are not very accurate. Alas, the tilted Gaussian does not reproduce the small- 
time feature of the forwards peak associated with high concentrations carried along 
at  nearly the peak velocity 2a in the fluid close to the centre of the pipe. 

4. Plane Poiseuille flow 
For laminar flow between parallel plates 2a apart, we have 

m = I, K = constant, u = $(I - (y/a)’). 

The (conventional) centroid displacement function is 

(4.la-c) 

(4.2) 

The necessary integrals of go are 

4a3a4 - a2a4 
1 7 3 2 5 ~ ~ ’  5 2 5 ~ ~  ’ 

(4.3a-c) g; = - 2da2 
(u-a)go = - 

1 0 5 ~  ’ 
( u - q g ;  = - 

The general formulae (2.3a-c) for D,, a and A yield the results 

3 6 3 ~  A = -  - 7  2a2a2 D,=- 
1 0 5 ~  ’ 22a’ 37a2. 

(4.4 a-c) a=- 

Jayaraj & Subramanian (1978, figure 2) give numerical results for the 
concentration contours after a time lapse 

a2 
t = 0.1 -, K At = 0.98. (4.5a, b)  

These are shown by the continuous curves in figure 2. The tilted Gaussian (2.4a-d) 
yields the dashed contours. Although the overall agreement is reasonable, the 
approximation fails to indicate any secondary concentration maxima at the channel 
walls. 

Figure 3 gives the corresponding comparisons between the numerical solution for 
.? (Jayaraj & Subramanian 1978, figure 3) and tilted Gaussian approximation 
( 1 . 2 a 4  for (c). For completeness we include the dotted curve which shows the 
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FIGURE 2. Comparison between the exact (+-) and tilted Gaussian (---) concentration 
contours in plane Poiseuille flow at time 0.1a2/~ after discharge. 
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FIGURE 3. Comparison between the exact and approximate distributions for the cross-sectionally 
averaged concentration F in plane Poiseuille flow at time O.la'/~ after discharge. 

classical Gaussian prediction for c (equation (1 .1  a ) )  with no allowance for skewness 
nor memory. Again, the main shortcoming of the tilted Gaussian is that it does not 
reproduce the small-time feature of the secondary peak. 

5. Two-layer flows 
For two well-mixed layers of velocities u+, u- and fractional areas a+, a- with an 

e-folding rate h for mixing between the layers, the (conventional) centroid 
displacement function can be written 

g - -(u+-u-), a- g- = -(U+--U-). -a+ (5.1 a ,  b )  
+ -  h h 
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FIGURE 4. Comparison between the exact (-) solution for .T, the conventional Gaussian (. . . . . .) for 
e; and tilted Gaussian (----) for (c) in a two-layer flow when the discharge is confined to (a )  the 
faster layer, ( b )  the slower layer. The area under the delta-function spikes in the exact solution is 
indicated by the area of the flags. 

The + subscripts refer to the faster-moving layer. Where previously we had to 
evaluate integrals (2.3a-c), we now just have two-term summations : 

a, a- 
A 

- (a, - a-) 
2a+ a-(u+ - u-) ’ D, = -(u+-u-) 2 , a =  (5.2a, b )  

A = 4a+a-h. ( 5 . 2 ~ )  

Thacker (1976) gave the exact solution for equal layers, which Smith (1981, $5) 
generalized to unequal layers. For a sudden discharge q+, q- a t  x = 0 ,  t = 0 the exact 
solution for C(x, t )  has delta-function spikes a t  the end points : 

F =  a-q-6(x-u-t)exp( -a+&), (5 .3a)  

= a, q+ S(x - u- t )  exp ( -a- At ) ,  (5 .3b )  
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with a modified Bessel function representation in the central region u- t < x < u+ t :  

(a-(x-u- t )+a+(u+t-x))  , ( 5 . 3 ~ )  x exp{ -____ I h 
u+ - u- 

where 
4A2a+ a- 

(u+ - u-) 
r2 = * (x- u- t )  (u+ t -  x). ( 5 . 3 4  

Figure 4 (a )  compares the exact and conventional Gaussian solutions for E(x, t )  with 
the tilted Gaussian for ( c )  when the discharge is confined to the faster layer in the 
dead-zone case 

(5.4) 

Figure 4 ( b )  gives the comparisons in the opposite extreme of a discharge confined to 
the slower layer. Although the finite propagation speeds and the concentration spikes 
are not modelled, for small values of At the tilted Gaussian is a significant 
improvement upon the classical Gaussian approximation. 

u- = 0, u+ = 1.5a (a- = 3, 1 a+ = 8). 

6. Starting point for the derivation 

diffusion equation takes the form 
For a high-PBclet-number, parallel shear flow in the x-direction, the advection- 

with 

ma, c + mu a, c - a,(mK a, c )  = 0, 

mKa,c=O on y = O , a ,  

(6 . la )  

(6 . lb)  

and c = q(y)6(x) a t  t = 0. ( 6 . 1 ~ )  

For simplicity it has been assumed that the discharge is of negligible longitudinal or 
temporal extent. Also, we have ignored any longitudinal diffusion K a: c ,  on the basis 
that the PBclet number W / K  is large and velocity effects soon dominate diffusion. 

Some of these approximations can be rectified easily. For example, Aris (1956) 
showed that longitudinal diffusion K(y)  increases the shear dispersion coefficient by 
K. Similarly, if the initial discharge has variance g2(0) then the variance needs to be 
augmented by this amount. These minor corrections have been included in the 
results stated in $$1 and 2,  and have a small but perceptible improving effect on the 
performance of the new Gaussian approximations in figures 14 .  

If we use ti tilted evolutionary coordinate 

T = t + a ( ~ - t ~ t ) ,  (6.2) 

(6.3) 

( l + a ( u - ~ ) } c  = p(y)&(x) at T = 0. (6.4) 

then the field equation satisfied by c(x ,  y, t )  takes the modified form 

m{l + a(u - G)} aT c +mu a, c - a , (mK a, c )  = 0. 

The initial condition is also modified slightly: 
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7. Building-in prior knowledge 
To make our approximations as efficient as possible, we try to exploit our prior 

knowledge of what to  expect. For example, Aris (1956) showed that a t  large times 
after discharge the contaminant cloud will be carried along a t  the bulk velocity U, 
but with a displacement between the centroid position at different levels across the 
flow. Also, the marked skewness a t  large times after discharge can be suppressed by 
the use of tilted axes (Smith 1987). Thus, we define a coordinate system 

6 = x-@t-X(y, T), (7.laS) 

T = t+ct(~-at), (7.lb) 

To a first approximation the cross-stream concentration profile $(y, T )  is related 

m(i+a(u-~)}a,+-a,(mKa,+) = 0, ( 7 . 2 ~ )  

with mKa,$=O on y = O , a ,  (7.2b) 

and {1 + a ( u - ~ ) )  q5 = q(y)/q a t  T = 0. ( 7 . 2 ~ )  

where the centroid displacement function X(y, T )  is defined below in (7.6u-c). 

to the discharge shape p(y) : 

We remark that $ is non-negative and satisfies the normalization 

(9) = 1, (7.3) 

where the angle brackets denote a weighted average : 

l a  
(c) = {l+a(u-a)}cmdy. (7.4) 

At large times after discharge $(y, T) becomes uniform : 

$(Y,T) * 1. (7 .5)  
The centroid displacement X(y, T )  satisfies the transverse diffusion equation 

m{i + a(u - u)} a,(+x) - a,(mK a,($x)) = nt(u - q $, ( 7 . 6 ~ )  

with m~a,($X) = 0 on y = 0, a, (7.66) 

and $ X = O  a t  T = O .  ( 7 . 6 ~ )  

The evolution of ($X) is related to that of +: 

(7.7) 

where go(y) is the (steady) centroid displacement function as defined in (2.1 u-c). At 
large times we can infer that the y-dependence of $X is the same as that of go(y): 

$ X - V  - go(!/) or W--($X> - SCo(Y)? (7.8a, b) 

where 9AY) = So(Y)-”D,, (goo> = 0. (7.8c, d )  

Together, (7.7), (7.8b) yield the asymptote 
- 

x N g, (y)++% 
q 

(7.9) 
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I n  the tilted, centroid-following coordinate system we replace the advection- 
diffusion equation (6.1) by 

a,$a,c -mK(a,x)Za,lc-a,(mKi),c) = 0: m{ 1 + a(u  - G)} aT c + 2 m ~  a,X a, a,c 

( 7.10 a)  

with mKa,c = 0 on y = O,a, (7.10 b) 

and { l+a(u-a) )c  = q(y)6(c)  at T =  0. (7.10 c )  

So much information has been built-in to these equations (via $ and X) that it is now 
only a simple task to derive a diffusion approximation. 

1 ( 4  
- 

8. Diffusion approximation 
We decompose c(6, y, T )  into a part associated with $(y, T )  and a perturbation c' : 

c = (c) $+c' with (c') = 0. (8.lu, b )  

The cross-sectionally averaged version of ( 7 . 1 0 ~ )  is 

a,(~>-K$(a,x)za;<c> + 2 a , ~ $  a,xa,(c'/$)-a,"K(a,x)*ci = 0. (8.2) 

A diffusion model (Taylor 1953) for the evolution of ( c )  merely requires the total 

( 8 . 3 ~ )  
neglect of c' : 

a,(+ - D  q ( C >  = 0, 

with D(T)  = K$(a,x)z = (U-tq$x--;aT($xz). (8.3b) 

At large times X ( y , T )  becomes steady, and the asymptotic value of the shear 
dispersion coefficient D(T) conforms precisely with the value D ,  calculated by Taylor 
(1953) : 

At earlier times the non-negative character of D(T)  is a simple consequence of the 
non-negative character of $. 

For a sudden discharge at T = [ =  0 the solution of ( 8 . 3 ~ )  is a Gaussian 
distribution for ( c )  : 

D ,  = (u-E)go. (8.4) 

with 

= 2 Jr (U - E )  $X d T  - ($Xz>.  (8.5b) 

If we reinstate the $(y ,T)  factor, but neglect c', then this is a tilted Gaussian 
approximation for the y-dependent concentration distribution c(x,  y, t ) .  The Gaussian 
(2.4u-d) corresponds to the elementary case in which $ = 1. 

It deserves emphasis that the Gaussian (8.5a, b)  is a solution of the model equation 
(8.3) and not of the full equation (8.2). For non-optimal a the dominant error is 
associated with the skewness and decays a t  the slow rate T - 3  (Chatwin 1970). For 
optimal a the dominant error is associated with the kurtosis (spikiness) and decays 
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at  the rate TI. Indeed, the two-humped profiles shown in figures 1,  3 and the delta- 
function spikes in figure 4(a,  b )  are extreme examples of the spikiness and non- 
Gaussianity a t  short times after discharge. 

9. A Gaussian for ( c )  

Gaussian ( 8 . 5 ~ ~ )  : 
The definition (7 .1  a )  of the centroid-following coordinate g, allows us t,o rewrite the 

The usual requirement is an approximation in the conventional x ,  y coordinates for 
the cross-sectionally averaged concentration C. To do this would require some 
knowledge of the error term c’. So instead we derive an approximation for ( c ) .  

Following Smith (1987, 97) ,  we make the definitions 

x-at-($X) ,zz = ($a2) + (d(x-(#m)z>> 5 = ,z (9.2a, 6 )  

For large 2 the Gaussian (9.1) can be expanded as a Hermite series: 

(x-(4x))3 He,(C) + . . .} . (9.3) 
6C3 

By construction the coefficients of He, and He, have zero weighted average values. 
Hence, we pose the Gaussian approximation 

with 

(9.4a) 

(9.4b) 

By not resolving the y-dependent centroid displacement X(y, t ) ,  we pay the price of 
an increased variance C2 instead of (#r’). The neglected He, term decays as T3 and 
is much smaller than the intrinsic error in the original formula ( 8 . 5 ~ )  (Chatwin 1970). 

For a uniform discharge and with a = 0 the time-dependence of C2 is identical to 
that yielded by the work of Gill & Sankarasubramanian (1970, equations 10a, 14). 
Indeed, although (9.1), ( 9 . 4 ~ )  are approximations, it happens that the area and 
centroid are exact. If # = 1 then the variance is also exact, The neglected terms only 
influence the skewness, kurtosis,. . . . Hence, as in the work of Gill & Sankara- 
subramanian (1970), the predictions will be credible even a t  small times when the 
departures c‘ from the #-profile may be large. 

10. One-mode model 

eigenvalues A, : 
The exact solution for #(y ,T)  can be given in terms of eigenmodes @, and 

a,(mKa,$In)+hflm{l + a ( ~ - - ) ) h  = 0, (1O.la) 
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with m ~ i 3 , $ ~  = 0 on y = O,a, (10.1 b)  

and <$eJ = 1 .  (1O.lc) 

The lowest mode is uniform and non-decaying 

$, = 1, A, = o .  (10.2 a ,  b )  

The solution for $(y, T) is - 

(10.3) 

To represent the right-hand-side forcing terms in ( 7 . 6 ~ )  we introduce the velocity 
coefficients 

u m n  = (u- g) $m ~ n *  (10.4) 

As the mode numbers m, n increase the modes $m,  $,, become increasingly oscillatory 
and the coefficients urn, become small. The exact solution for #IX is 

q$n $ = I +  C -+n(y)exp(-AnT). 
n-1 

exp ( - A m  T) -exp ( - A n  T) 
where J m n ( T )  = (10.5 b )  

A n - L  

From the large-T asymptote (7.9) we can infer that  

00 

g m ( Y )  = c p $ n ( Y ) ,  
n-1 n 

( 1 0 . 6 ~ )  

(10.6b, c )  

It is easy to calculate g,(y) but difficult to calculate the eigenmodes $, and 
eigenvalues A,. So, we merely use the exact solutions (10.3), (10.5) as guides in our 
selection of one-mode approximations. I n  particular, if the series (10.6a-c) converge 
rapidly, then the leading non-uniform mode can be approximated : 

(10.7a, 6 )  

(Smith 1981). 
Formulae 'for $ and for #IX which have the correct symmetry between the q- and 

y-dependence, and are exact in the one-mode limit, are 

(10.8a) 

(10.8 b)  
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The corresponding one-mode approximations for (4X) and for C2 are 
- 

(4X) = @{l-exp(-AT)}, 
P 

Z2 = 2DwT-2---(1-exp(-AT)} DW 
A 

(10.9a) 

{ 1 - ( 1 + AT) exp ( - AT)} - ( # X ) 2 .  ( 10.9 b )  

For a uniform discharge and with a = 0, the accuracy of such one-mode 
approximations for C2 has been tested by Smith (1981, figures 2 , 5 , 8 ) .  To recover the 
formulae (2.56, c) given in the statement of results, we include the allowance for the 
initial variance (r2(0) and for the longitudinal diffusivity K ( y ) .  

The non-negative property of $(y, T) is lost in the truncation ( 1 0 . 8 ~ ~ ) .  It is for that 
reason that the y-dependent Gaussian (2.4a) should strictly be restricted to the case 
in which q4 = 1 .  Fortunately, the formulae (10.9b) for Z2 does remain positive for all 
discharge profiles q(y). So the formula (2.5a) is applicable a t  all times, even though 
its accuracy may be poor for small A T  when higher modes might not have decayed 
away. The leading term for small A T  is 

(10. lo) 

The spatial error in the tilted Gaussian (2.4) can be explained in terms of the 
modes. The go(y)- and A-terms account for the longest-persisting $,(y) mode. 
However, the next longest-persisting mode $,(y) is not accommodated. In figure 2 
the concentration maxima along the boundary and along the centreline are both 
under-predicted, while at intermediate y-positions the concentration maxima are 
over-predicted. In the concentration tails the signs of the errors are reversed : along 
the boundary and along the centreline the concentrations are over-predicted, with 
under-prediction a t  intermediate positions. 

mode that the tilted Gaussians (2.4), (2.5) become 
useful earlier than the classical Gaussian (1.1). The test cases shown in figures 1 , 3  are 
flattering to the classical Gaussian, because the centroid position happens to be 
correct for a uniform discharge. So, the greater accuracies of the tilted Gaussians in 
figures 1 ,  3 are attributable to the $,-related modifications to the variance. The 
subsequent decay of the errors is as (At)-', which is faster than the classical rate (At)-& 
(Chatwin 1970). 

It is by accounting for the 

11. Choosing the skewness parameter 
When we ceased to resolve the y-dependence of the centroid displacement X(y, T), 

the associated blurring of the concentration distribution resulted in an increase of 
variance from ($(r2) to C2. Similarly, we can expect that an inappropriate choice of 
tilted axes would increase both ((r2) and Z2. Accordingly, we seek to maximize (g : ) ,  
or minimize A (see (10.7b) and (10.9b)). 

To highlight the a-dependence, we write 

(9:) = ~ + a ( u - a ) g ~ - a 2 D ~ .  (11.1) 
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This attains its maximum with respect to a at 

207 

(11.2) 

Reassuringly, this is precisely the value of the skewness parameter a which 
minimizes the eventual skewness (Smith 1987, equation (4.8)). With this particular 
value of a, the formula (10.7b) for A can be written as given in the statement of 
results : 

(11.3) 

At this stage the derivation is complete. For the method of application and tests 
of accuracy we refer back to the first five sections of this paper. 

I wish to thank the Royal Society for financial support. 
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